

Risk-Based Inspection (RBI) Services

RBI is a **proven method** to determine the optimum inspection scope and interval using a **risk-based data-driven approach**. It improves equipment integrity, safe operational efficiency, and maintenance cost of both static pieces of equipment and piping.

Business Benefits

- Optimized inspection and maintenance value (reduced cost);
- Optimized and extended inspection intervals;
- Reduced **inspection scope**.
- Reduced non-productive time;
- Increased equipment availability.

>> KEEL APPROACH

We provide not only the classical RBI services, but we also **implement the inspection program** directly to the CMMS.

RBI Implementation Services:

We take care of all additional steps to implement the developed inspection program into your maintenance system:

- Implementation of the inspection program directly into the CMMS:
 - Alignment and scheduling of non-intrusive inspections with current plant maintenance program;
 - Alignment and scheduling of all intrusive inspections with planned plant shutdown to optimize the equipment uptime;
- Onsite data collection and verification, line walks, CAD services, etc. (if required).

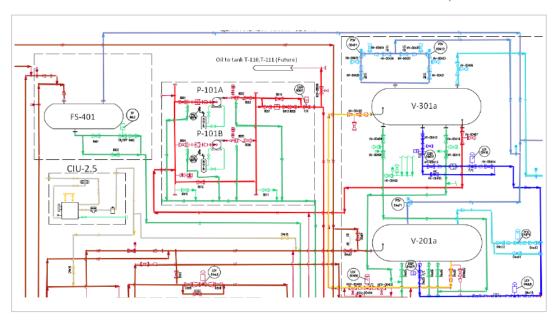
Additional Services

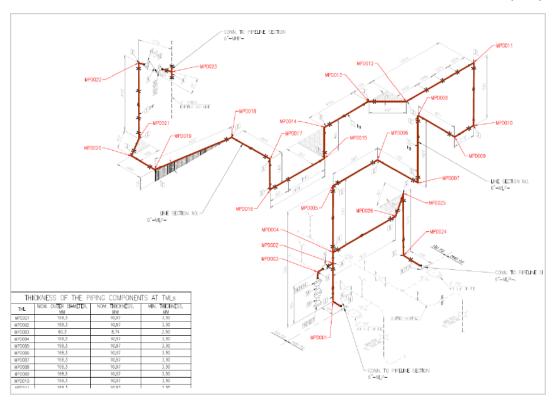
If required, we provide full stack of engineering, consultancy and other engineering support services to optimize your business, including:

Virtual support services:

- □ Plant operational support in ERP/EAM system;
- Project, Procurement, Logistics, and Supply chain support.
- Data cleansing services;
- Maintenance engineering services:
 - Development of equipment maintenance strategies;
 - □ Plant Maintenance Optimization (PMO);
 - Reliability Centred Maintenance (RCM);
 - Equipment and inventory criticality assessment.
- Warehouse and materials management and optimization.

>> RBI PROCESS


Initial RBI Sequential RBI Inspection from scratch Using previous data							
Inspection from scratch	osing previous data						
:	•						
1 • DATA							
Collection & Evaluation	Review & Evaluation						
2 - CORROSION LOOPS - DAMAGING MECHANISMS							
Identification	Review						
3 • RISK ASSESSMENT							
Initial Assessment	Re-assessment						
4 • INTEGRITY OPERATING WINDOWS FOR STATIC EQUIPMENT							
Development	Review						
5 • OPTIMAL INSPECTION PROGRAM • MIT	FIGATION ACTIONS • OPERATING PROCEDURES						
Development	Review & Evaluation						
6 • INSPECTION PROGRAM IN CMMS	_						
Implementation	Review & Adjustment						


>> DOCUMENTATION EXAMPLES

For RBI, we use the principles and methodologies stated in the **API 580/581** and **API 579-1/ASME FFS-1** standards to calculate the equipment fitness for service.

Corrosion loops identification

Piping Inspection drawing with specified thickness measurement locations (TML)

>> DOCUMENTATION EXAMPLES

WALL THICKNESS CALCULATION SHEET

PIPING COMPONENT:

6" 45° LR ELBOW, B.W. SCH.80, ASTM A234 WPB 6" 90° LR ELBOW, B.W. SCH.80, ASTM A234 WPB 6" EQUAL TEE, B.W. SCH.80, ASTM A234 WPB

Ø6"

ID	ITEM DESCRIPTION	SYMB.	VALUE	UNITS	FORMULA	Reference
OPE	ERATING CONDITIONS					
1	OPERATING TEMPERATURE	T	50,00	°C		[1]
2	OPERATING PRESSIRE	P	1440,00	PSI		[1]
ME	CHANICAL PROPERTIES OF PIPING COMP	ONEN	г			
3	GRADE	GR	ASTM A234 WPB	ul		
1	TENSILE STRENGTH	TS	414,00	MPa		[2]
5	YIELD STRENGTH	YS	241,00	MPa		[2]
3	STRENGTH REDUCTION FACTOR	к,	1,00	ul		[3, 4]
7	ALLOWABLE STRESS	s	138,00	MPa		[16]
ме	CHANICAL AND CORROSION/EROSION AL	LOWA	NCES			
В	EXTERNAL ALLOWANCES	C.	N/A	mm		[6]
9	INTERNAL ALLOWANCES	C,	N/A	mm		[6]
10	TOTAL ALLOWANCES	С	N/A	mm	c = c _o + c _i	[7]
GEO	OMETRICAL PROPERTIES OF PIPING COM	IPONEI	NT			
11	NOMINAL PIPE SIZE	NPS	6*	inch		
12	SCHEDULE/DESIGNATION	SCH	80,00	ul		
13	NOMINAL PIPE THICKNESS	f nom	10,97	mm		[8]
14	NOMINAL OUSIDE DIAMETER	D	168,30	mm		[8]
15	UPPER TOLERANCE LIMIT	tt o	2,40	mm		[9]
16	MAX. OUSIDE DIAMETER	D_{m}	170,70	mm	D = D+tt ,	
17	INSIDE DIAMETER	d	146,36	mm	d = D-2t oon	
18	CENTER-TO-END RADIUS (ELBOWS ONLY)	R,	229,00	mm		[9]
19	EXTRADOS (ELBOWS ONLY)	1	1,29	mm	$I = [4(R_{+}/D)-1]/[4(R_{+}/D)-2]$	[11]
COE	EFFICIENTS					
20	THICKNESS COEFFICIENT	Υ	0,40	ul		[15]
21	WELD JOINT STRENGHT	W	1,00	ul		[12]
22	QUALITY FACTOR	Ε	1,00	ul		[13]
MIN	NIMUM REQUIRED THICKNESS (WORN PIF	E)				
23	PRESSURE DESIGN THICKNESS	t	7,53	mm	t = PD/[2(SEW+PY)]	[10]

Learn more about our RBI Services >>>